Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Dibromo(N, N^{\prime}-di-2-pyridylamine$\kappa^{2} N, N^{\prime}$)palladium(II)

Wen-Rui Yao, Ze-Hua Liu and Qian-Feng Zhang*

Department of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, People's Republic of China
Correspondence e-mail: zhangqf@ahut.edu.cn

Received 20 February 2003
Accepted 26 February 2003
Online 21 March 2003
The palladium center of the title compound, $\left[\mathrm{PdBr}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{9}-\right.\right.$ $\left.\mathrm{N}_{3}\right)$], has a slightly distorted square-planar conformation, with the Pd atom bonded to the two pyridine N atoms of the di-2pyridylamine moiety and to two Br atoms. The $\mathrm{Pd}-\mathrm{Br}$ and $\mathrm{Pd}-\mathrm{N}$ bond lengths are 2.4168 (6)/2.4201 (5) and 2.036 (3)/ 2.042 (3) A., respectively.

Comment

Palladium-mediated reactions, such as polymerization, $\mathrm{C}-\mathrm{C}$ coupling reactions and aminations, have attracted significant interest during recent years, as these reactions are versatile tools in synthetic chemistry and industrial catalysis (Miyaura \& Suzuki, 1995). Recently, di-2-pyridylamines have been obtained by sequential palladium-catalyzed aryl amination reactions starting from a primary amine (Buchmeiser \& Wurst, 1999). Such compounds have three sites where coordination to a transition metal may occur, viz. the two pyridine moieties and the amine function. In contrast to the structure of the classical $2,2^{\prime}$-bipyridine-type ligand, six-membered rings are formed. The coordination chemistry of the simplest member of the dipyridylamine group, viz. di-2-pyridylamine or (2-py) ${ }_{2} \mathrm{NH}$, has been described in detail for Cu complexes (Thompson \& Whitney, 1984). However, complexes of palladium are much rarer (Schareina et al., 2001). We report here the crystal structure of a neutral mononuclear palladium(II) complex of di-2-pyridylamine, namely $\left[\mathrm{PdBr}_{2}\left\{(2-\mathrm{py})_{2} \mathrm{NH}\right\}\right]$, (I), with selective catalytic activity.

(I)

In compound (I) (Fig. 1), the coordination of the palladium center is slightly distorted square planar, with the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ and $\mathrm{Br}-\mathrm{Pd}-\mathrm{Br}$ bond angles deviating slightly from the

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
standard planar angle of 90° (Table 1). However, in contrast to the geometry of (2,2'-bipyridyl)dichloropalladium(II), $\left[\mathrm{PdCl}_{2}{ }^{-}\right.$ (bipy)], in which the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ bond angle is 80.1 (7) ${ }^{\circ}$ (Canty et al., 1992), the geometry of the Pd atom in (I) is best described as square planar. The average $\mathrm{Pd}-\mathrm{N}$ bond length of 2.039 (3) \AA in (I) agrees reasonably well with the corresponding distances in $\left[\mathrm{PdCl}_{2}\left\{(2-\mathrm{py})_{2} \mathrm{~N}\left(\mathrm{COCH}_{3}\right)\right\}\right]$ [mean $=$ 2.040 (3) \AA; Buchmeiser \& Wurst, 1999] and $\left[\mathrm{PdCl}_{2}\{(4-\mathrm{Me}-2-\right.$ py) $\left.\left.)_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\right\}\right][$ mean $=2.022$ (3) \AA; Schareina et al., 2001]. The mean $\mathrm{Pd}-\mathrm{Br}$ bond length of 2.4184 (6) \AA in (I) is also comparable to those of related compounds (Smeets et al., 1997).

The configuration around the $s p^{2}$-hybridized amide atom N3 is virtually distorted triangular and, consequently, the C5$\mathrm{N} 3-\mathrm{C} 6$ bond angle deviates from the standard value of 120°. The $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 10$ angles are very close to the value for a standard six-membered planar ring. The deviations of the six-membered ring from an eclipsed conformation at atoms Pd1 and N3 are 0.45 and $0.39 \AA$, respectively, in the same direction. This distortion can be explained by the Gillespie-Nyholm rules (Gillespie, 1992). The high selectivity of (I) results from its geometry, as indi-

Figure 2
The three-dimensional packing framework of (I), viewed down the b axis, showing intermolecular contacts.
cated by the molecular packing shown in Fig. 2. There are weak $\mathrm{C} 1 A A-\mathrm{H} 1 A A \cdots \mathrm{Br} 1 A \quad[3.216(3) \AA]$ and $\mathrm{N} 3 A A-$ $\mathrm{H} 3 A A \cdots \mathrm{Br} 1 A\left(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right)[3.411$ (3) \AA] intermolecular interactions, and atom Pd1 is also involved in weaker interactions with the amine N atom. The separation between $\operatorname{Pd} 1 A$ and N $3 A A$ is 3.102 (3) \AA, which indicates the presence of $d-\pi$ stacking interactions.

Experimental

Di-2-pyridylamine ($171 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in dichloromethane (5 ml) and added to $\left[\mathrm{PdBr}_{2}\left(\mathrm{SMe}_{2}\right)_{2}\right](395 \mathrm{mg}, 1.0 \mathrm{mmol})$ in acetonitrile (5 ml) in a Schlenk vessel. After 3 d at room temperature, orange crystals separated from the solution and these were used for X-ray analysis without further purification.

Crystal data

```
\(\left[\mathrm{PdBr}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right]\)
\(M_{r}=437.42\)
Monoclinic, \(P 2_{1} / n\)
\(a=10.3274\) (8) \(\AA\)
\(b=9.6764\) (7) \(\AA\)
\(c=12.3385(10) \AA\)
\(\beta=95.880\) (2) \({ }^{\circ}\)
\(V=1226.52(16) \AA^{3}\)
\(Z=4\)
```

$D_{x}=2.369 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3136
reflections
$\theta=2.5-28.3^{\circ}$
$\mu=8.00 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, orange
$0.32 \times 0.30 \times 0.26 \mathrm{~mm}$

Data collection
Bruker APEX CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.840, T_{\text {max }}=1.000$
9229 measured reflections
3047 independent reflections
2561 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-13 \rightarrow 8$
$k=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.093$
$S=1.03$
3047 reflections
145 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Pd} 1-\mathrm{Br} 1$	$2.4168(6)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.335(5)$
$\mathrm{Pd} 1-\mathrm{Br} 2$	$2.4201(5)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.332(5)$
$\mathrm{Pd} 1-\mathrm{N} 1$	$2.042(3)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.362(5)$
$\mathrm{Pd} 1-\mathrm{N} 2$	$2.036(3)$	$\mathrm{N} 3-\mathrm{C} 5$	$1.380(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.345(5)$	$\mathrm{N} 3-\mathrm{C} 6$	$1.389(5)$
$\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{Br} 2$	$89.07(2)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Pd} 1$	$119.2(3)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{N} 2$	$87.79(13)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$119.0(3)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Br} 1$	$91.01(9)$	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{Pd} 1$	$119.8(3)$
$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{Br} 1$	$176.17(9)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Pd} 1$	$120.8(3)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Br} 2$	$175.38(9)$	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 10$	$118.4(4)$
$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{Br} 2$	$91.83(9)$	$\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 6$	$127.2(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pd} 1$	$121.2(3)$		
$\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 1$	$35.0(3)$	$\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 3$	$-12.5(5)$
$\mathrm{Br} 2-\mathrm{Pd} 1-\mathrm{N} 2-\mathrm{C} 10$	$-35.7(3)$	$\mathrm{Pd} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{N} 3$	$15.2(5)$

structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Support for this work from the Anhui Provincial Natural Science Foundation (grant No. 00045105) and the Natural Science Foundation of China is gratefully acknowledged. QFZ is grateful for a start-up fund from Anhui University of Technology.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1159). Services for accessing these data are described at the back of the journal.

References

Bruker (1998). SMART and SAINT-Plus (Versions 6.02a), and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Buchmeiser, M. R. \& Wurst, K. (1999). J. Am. Chem. Soc. 121, 11101-11107.
Canty, A. J., Skelton, B. W., Traill, P. R. \& White, A. H. (1992). Aust. J. Chem. 45, 417-423.
Gillespie, R. J. (1992). Chem. Soc. Rev. pp. 59-69.
Miyaura, N. \& Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.
Schareina, T., Hillebrand, G., Fuhrmann, H. \& Kempe, R. (2001). Eur. J. Inorg. Chem. pp. 2421-2426.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Smeets, W. J. J., Spek, A. L., Hoare, J. L., Canty, A. J., Hovestad, N. \& van Koten, G. (1997). Acta Cryst. C53, 1045-1047.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thompson, J. S. \& Whitney, J. F. (1984). Inorg. Chem. 23, 2812-2819.

